China Standard Jurid Flexible Coupling, Jurid Rubber Coupling

Product Description

Product Description

 

Place of Origin: ZheJiang , China (Mainland) Brand Name: Kubota excavator coupling Model Number: JURID couplings
Application 1: Mini Excavators Application 2: Compact Loaders Application 3: Forlifts
Application 4: Construction machines using a hydraulic drive system Coupling model A: BoWex MONOLASTIC size 28 Coupling model B: BoWex MONOLASTIC size 32
Coupling model C: BoWex MONOLASTIC size 50-140 Coupling model D: BoWex MONOLASTIC size 50-170 Material: Original material-GF-PA6
Availability: In stock

Packaging & Delivery

Packaging Details: JURID couplings
1. spare parts, with carton package as usual for mini order
2. Main pump, wooden box
3. if need wooden pallets, the customer needs to pay for the wooden pallet charges
Delivery Detail: 1-7 working days after payment

1.  Material options for H series Couplings
 
H series coupling we produced is made of Hytrel. It has elasticity like that of rubber. It is excellent in absorbing vibrations and shocks. It also excels in resistance to heat, low temperature and oil.
 
Input and output can be connected and disconnected easily merely by moving axially. By using a unique claming mechanism, mounting in a spline shaft is possible. Hub and spline shafts are completely fixed by using a clamping hub of the mechanism. No fretting wear is caused.
2. Technical Data

COUPLING “H” SERIES TECHNICAL DATA
                           SIZE  30H 40H 50H 110H 140H 160H
TECHNICAL DATA
DESCRIPTION SYMBOL UNIT 500 600 800 1200 1600 2000
Nominal Torque Tkn Nm
Maximum Torque Tkmax Nm 1400 1600 2000 2500 4000 4000
Maximum Rotational speed Nmax Min-1 4000 4000 4000 4000 3600 3600
COUPLING “A” SERIES TECHNICAL DATA
SIZE 4A/4AS 8A/8AS 16A/16AS 25A/25AS 30A/30AS 50A/50AS 140A/140AS
TECHNICAL DATA
DESCRIPTION SYMBOL UNIT 50 100 200 315 500 700 1700
Nominal Torque Tkn Nm
Maximum Torque Tkmax Nm 125 280 560 875 1400 2100 8750
Maximum Rotational speed Nmax Min-1 7000 6500 6000 5000 4000 4000 3600

FAQ
Why chose us
A. 30 yease experience in the line of the market, produce high quality excavator spare parts
     High quality at competitive price.
B. Factory manufacturer, factory price
C. One-stop shopping. We have Trading company based on our factory, supply with various spare parts for your need, with high quality at company price, one-stop shopping, save your time to searching the parts you need urgent.
D. Timely delivery
E. Various of transportation way: Sea, Air, Bus, Express, etc
F. Parts available in stock
Note:
A. In order to give you fast and accurate pricing information, we need some details about your engine/application and the part number of the part you want.
B. If you can not find the parts you want, please contact us

HangZhou Xiebang  Machinery Co., Ltd
 
Web: ynfmachinery /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

flexible coupling

Can flexible couplings accommodate variable operating conditions and loads?

Yes, flexible couplings are designed to accommodate variable operating conditions and loads in mechanical systems. They offer several features that allow them to adapt to changing conditions and handle different loads effectively. Below are the reasons why flexible couplings are well-suited for such applications:

Misalignment Compensation: Flexible couplings can handle misalignment between shafts, including angular, parallel, and axial misalignment. This capability allows them to accommodate slight shifts in shaft positions that may occur due to thermal expansion, vibration, or other factors, ensuring smooth operation even in changing conditions.

Shock and Vibration Absorption: Flexible couplings can dampen shocks and vibrations that result from sudden changes in load or operating conditions. The flexible element in the coupling acts as a buffer, absorbing and reducing the impact of sudden loads or transient forces, protecting connected equipment and increasing system reliability.

Variable Load Capacity: Flexible couplings come in various designs and materials, each with its load capacity range. Manufacturers provide different coupling models with varying load capacities to accommodate different applications. Properly selecting the right coupling for the specific load conditions ensures reliable power transmission even under varying loads.

Compensation for Thermal Expansion: Temperature changes can cause thermal expansion in mechanical systems, leading to shaft misalignment. Flexible couplings can handle the resulting misalignment, compensating for thermal expansion and ensuring continuous and smooth power transmission.

Torsional Stiffness: Flexible couplings are designed with a balance between flexibility and torsional stiffness. This property allows them to adapt to variable loads while still providing the necessary rigidity for efficient power transmission.

Durable Materials and Designs: Manufacturers produce flexible couplings from durable materials like stainless steel, aluminum, or engineered elastomers. These materials ensure that the couplings can withstand varying operating conditions, including temperature fluctuations, harsh environments, and high loads.

Dynamic Behavior: Flexible couplings have a dynamic behavior that enables them to operate smoothly and efficiently under changing loads and speeds. They can handle variations in rotational speed and torque while maintaining consistent performance.

Application Flexibility: Flexible couplings find applications in a wide range of industries, from automotive and aerospace to industrial and marine. Their versatility allows them to accommodate variable operating conditions and loads in different systems.

Summary: Flexible couplings are well-suited for applications with variable operating conditions and loads. Their ability to compensate for misalignment, absorb shocks and vibrations, and handle thermal expansion make them reliable components in mechanical systems. The availability of various coupling designs and materials allows for the selection of the appropriate coupling based on the specific application requirements, ensuring optimal performance and longevity in variable conditions.

flexible coupling

Can flexible couplings be used in marine and automotive applications?

Yes, flexible couplings are commonly used in both marine and automotive applications. They offer various advantages that make them suitable for these industries:

  • Misalignment Compensation: In marine and automotive systems, there can be misalignments due to factors such as hull flexing in marine vessels or engine movements in vehicles. Flexible couplings can accommodate these misalignments, ensuring efficient power transmission between the engine and the propeller or wheels.
  • Vibration Damping: Both marine and automotive environments experience vibrations from engines, propellers, or road conditions. Flexible couplings help dampen these vibrations, reducing wear on components and enhancing the comfort of passengers or crew members.
  • Shock Load Absorption: Marine vessels and vehicles can encounter shock loads during operation, especially in rough sea conditions or uneven terrains. Flexible couplings can absorb and dissipate the impact of these shock loads, protecting the drivetrain and transmission components.
  • Compact Design: Space is often limited in marine vessels and automotive systems. Flexible couplings come in various compact designs, making them suitable for applications with restricted installation space.
  • Corrosion Resistance: Marine environments expose components to corrosive seawater, while automotive systems may encounter exposure to road salt and other corrosive substances. Flexible couplings made from corrosion-resistant materials, such as stainless steel or non-metallic compounds, are ideal for these applications.
  • Easy Maintenance: Flexible couplings with self-lubricating features or low maintenance requirements are well-suited for marine and automotive applications, where regular maintenance can be challenging.
  • High Torque Capacity: Automotive systems, especially in heavy-duty vehicles, require couplings that can handle high torque levels. Flexible couplings designed for automotive use offer high torque capacity and reliability.

Overall, the adaptability, vibration damping, and misalignment compensation provided by flexible couplings make them suitable for various marine and automotive applications. Whether used in boats, yachts, ships, cars, trucks, or other vehicles, flexible couplings contribute to smooth and reliable power transmission, leading to improved performance and reduced maintenance requirements.

flexible coupling

Can flexible couplings be used for both motor-to-shaft and shaft-to-shaft connections?

Yes, flexible couplings can be used for both motor-to-shaft and shaft-to-shaft connections in various applications. The versatility of flexible couplings allows them to adapt to different types of connections and meet the specific requirements of the system.

Motor-to-Shaft Connections:

When connecting a motor to a shaft, a flexible coupling serves as an intermediary component that joins the motor shaft and the driven shaft. Flexible couplings are commonly used in motor-driven systems to accommodate misalignment between the motor and the driven load. In motor applications, flexible couplings help reduce stress and wear on the motor bearings, thus extending the motor’s life and enhancing overall system reliability. They also act as vibration dampeners, minimizing vibrations transmitted from the motor to the driven shaft, and subsequently to connected equipment, ensuring smoother operation.

Shaft-to-Shaft Connections:

In many mechanical systems, such as those in the manufacturing, automation, and power transmission industries, shaft-to-shaft connections are required. A flexible coupling can bridge the gap between two shafts and transmit torque while accommodating misalignment. This type of coupling is commonly used to connect shafts that are not perfectly aligned due to factors like manufacturing tolerances, thermal expansion, or foundation settling. By allowing for misalignment, the flexible coupling protects the connected components from excessive stresses and ensures efficient power transmission.

Versatility and Advantages:

The ability of flexible couplings to handle both motor-to-shaft and shaft-to-shaft connections makes them versatile solutions for a wide range of industrial applications. Some of the advantages of using flexible couplings in these connections include:

  • Minimizing stress and wear on connected components, such as bearings and seals.
  • Compensating for misalignment, ensuring smooth power transmission.
  • Damping vibrations and shock loads, reducing the risk of mechanical failures.
  • Protecting equipment from excessive forces, enhancing system reliability.
  • Simplifying installation and alignment procedures, reducing downtime.
  • Improving overall system performance and operational efficiency.

Applications:

Flexible couplings find applications in a wide range of industries, including manufacturing, material handling, automotive, aerospace, robotics, and more. Whether connecting a motor to a shaft or joining two shafts directly, flexible couplings play a crucial role in enhancing the reliability and efficiency of rotating machinery and mechanical systems.

In conclusion, flexible couplings can effectively serve as connectors for both motor-to-shaft and shaft-to-shaft connections, providing essential misalignment compensation and protection for connected equipment in various industrial applications.

China Standard Jurid Flexible Coupling, Jurid Rubber Coupling  China Standard Jurid Flexible Coupling, Jurid Rubber Coupling
editor by CX 2024-04-22

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *