China Standard Powder Metallurgy Flexible Jaw Coupling Sintered Iron Jaw Coupling Hubs

Product Description

Sintered Iron Jaw Coupling Hubs Flexible Jaw Coupling Rubber Spider Coupler Powder Metallurgy Jaw Coupler

Product Description

Name: Powder metallurgy/L type claw coupling

Material: Powder metallurgy (pig iron) 45 steel aluminum alloy optional

Material: The rubber pad material is NBR (nitrile rubber)

The L-shaped claw coupling is similar to the plum CHINAMFG coupling and is cast from powder metallurgy material. It has the characteristics of economy, practicality, easy disassembly, light weight, high torque, and wear resistance.
1. L-shaped 3 jaw coupling (powder metallurgy coupling), powder metallurgy is a process technology that produces metal materials, composites, and various types of products by using metal powder (or a mixture of metal powder and non-metal powder) as raw materials, forming and sintering.
2. The powder metallurgy coupling strengthens the connection between the teeth and the main body, making the teeth of the coupling less prone to breakage, more durable, and with a longer service life. The later stage adopts phosphating treatment, which has a beautiful appearance.
3. The rubber pad of L-type 3 jaw coupling is made of NBR (nitrile rubber), which is mainly produced by low-temperature lotion polymerization. It has excellent oil resistance, high wear resistance, good heat resistance, strong adhesion and other characteristics.
Powder metallurgy is an important process for manufacturing high-tech materials. It combines material equipment with metal forming technology to form a special metal forming technology for manufacturing machinery and electrical parts, which is precise, efficient, low consumption, energy-saving, and inexpensive. It is widely used in fields such as automobiles, motorcycles, household appliances, office machinery, agricultural machinery, engineering machinery, and electric tools.
L-type coupling models include L-035 L-050 L-070 L-075 L-090 L-095 L-099 L-100 L-110 L-150
L-type couplings are used in the mechanical field: hydraulic pumps, centrifugal pumps, small generators, blowers, fans, ventilators, belt conveyors, screw conveyors, thin plate bending machines, woodworking machinery, grinders, textile machines, similar machines, cutting machines, winches, generators, cement mixers, cable cars, cable winches, centrifuges, excavators, piston pumps, packers, paper making machinery, compressors, screw pump shearing machines, forging machines, stone crushers, piston compressors, vertical roller presses, welding machines, tribute plastic crushers.
 

Detailed Photos

Cast lron Jaw Coupling Hubs can help connect shafts together for heavy shock loads in variable-speed andvariable-torque applications. A complete assembly requires 2 hubs and 1 jaw coupling spider, available separately. Nitrile Butadiene Rubber and  polyurethane rubber are available to choose.Our company’s powder metallurgy L coupling is  include: L035 series, L050 series, L070 series, L075 series, L090 series, L095 series, L099 series, L100 series, L110 series, L150 series. Its product features are economical, convenient and light weight. Without lubrication, the products are exported to more than 40 countries. Rubber gaskets are made of high quality rubber products, oil resistant and friction resistant. Our company also contracts for powder metallurgy and other products.            
Service tenet: user satisfaction, quality assurance, integrity cooperation

Product Parameters

 

Packaging & Shipping

After Sales Service

Service tenet: user satisfaction, quality assurance, integrity cooperation

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

jaw coupling

Minimizing Wear and Tear on Connected Components with Jaw Couplings

A jaw coupling plays a critical role in minimizing wear and tear on connected components by providing several key benefits:

  • Shock Absorption: Jaw couplings have a flexible elastomeric element between the two hubs, which acts as a cushion and absorbs shocks and vibrations. When the connected machinery experiences sudden jolts or impacts, the jaw coupling helps dampen these forces, protecting the equipment from damage and reducing wear on components.
  • Misalignment Compensation: In mechanical systems, misalignment between shafts is a common issue that can lead to premature wear on components. Jaw couplings can tolerate a certain degree of angular, parallel, and axial misalignment, allowing for better alignment between the driving and driven components. This feature helps distribute forces more evenly and reduces stress on connected components.
  • Resilience to Overloads: Jaw couplings can withstand temporary overloads, such as starting torque or sudden load spikes, without causing damage to the connected equipment. The elastomeric element of the jaw coupling acts as a torque limiter, protecting the machinery from excessive loads and preventing wear and tear.
  • Backlash Prevention: Backlash, which is the play or clearance between mating gears or components, can cause impact forces during reversing motions. Jaw couplings offer low backlash performance, reducing the potential for impact and minimizing wear on gears and other components.
  • Reduced Maintenance: By providing shock absorption, misalignment compensation, overload protection, and low backlash, jaw couplings help extend the service life of connected components. This, in turn, reduces the frequency of maintenance and replacement, leading to cost savings and increased productivity.
  • Smooth Power Transmission: Jaw couplings transmit power smoothly between the driving and driven shafts, resulting in less stress on components. The torsional flexibility of the elastomeric element helps prevent abrupt torque spikes, contributing to improved component longevity.

Overall, the jaw coupling’s ability to absorb shocks, compensate for misalignment, handle overloads, and provide smooth power transmission makes it an effective solution for minimizing wear and tear on connected components. Regular inspection and maintenance of the jaw coupling are still essential to ensure its optimal performance and extend the life of the entire mechanical system.

jaw coupling

How does a jaw coupling help in power transmission efficiency?

A jaw coupling plays a significant role in enhancing power transmission efficiency in mechanical systems. It achieves this by incorporating several design features that minimize energy losses and maximize the transfer of power from one shaft to another. Here are some ways in which a jaw coupling helps improve power transmission efficiency:

  1. Mechanical Flexibility: Jaw couplings utilize a flexible elastomer spider as the connecting element between the two shafts. This elastomer spider allows for a certain degree of angular and parallel misalignment between the shafts without imposing significant additional loads on the connected equipment. The mechanical flexibility of the elastomer helps reduce the generation of excess heat and vibration, thereby optimizing power transmission efficiency.
  2. Vibration Damping: The elastomer spider in a jaw coupling also acts as a vibration-damping element. It absorbs and dissipates vibrations generated during the operation of rotating machinery. By dampening vibrations, the coupling reduces energy losses due to mechanical oscillations, which can otherwise decrease the overall power transmission efficiency.
  3. Shock Absorption: In addition to damping vibrations, jaw couplings can handle sudden shocks and impacts that may occur during equipment operation. The elastomer spider’s ability to absorb shocks prevents sudden force spikes from propagating through the system and helps maintain steady power transmission, thus improving overall efficiency.
  4. Reduced Friction: The design of jaw couplings minimizes sliding friction between the shafts and the coupling components. This reduced frictional resistance results in lower energy losses and less heat generation during power transmission, contributing to higher efficiency in the system.
  5. Torsional Wind-Up Compensation: When torque is transmitted through the shafts, there can be some degree of torsional wind-up or twist in the coupling. Jaw couplings can compensate for this torsional movement, ensuring that the transmitted power reaches the intended equipment without significant losses due to torsional deformation.
  6. Simple and Robust Design: Jaw couplings have a simple construction, typically consisting of two hubs and an elastomer spider. This straightforward design reduces the number of moving parts and potential points of failure, resulting in a robust and reliable coupling. A reliable coupling minimizes the risk of power losses due to mechanical inefficiencies or breakdowns, thus improving overall power transmission efficiency.

In summary, a jaw coupling enhances power transmission efficiency by providing mechanical flexibility, vibration damping, shock absorption, reduced friction, and torsional wind-up compensation. Its simple and robust design further contributes to reliable power transmission. When selecting a jaw coupling for a specific application, it is essential to consider factors such as torque requirements, operating conditions, and misalignment compensation to ensure optimal efficiency and performance in the system.

jaw coupling

Materials Used in Manufacturing Jaw Couplings

Jaw couplings are commonly made from various materials, each offering different properties and suitability for specific applications. Some of the commonly used materials include:

  • Polyurethane (PU): PU jaw couplings are known for their flexibility, high elasticity, and resistance to abrasion. They are ideal for applications requiring vibration dampening and shock absorption.
  • Aluminum: Aluminum jaw couplings are lightweight, corrosion-resistant, and have good thermal conductivity. They are commonly used in low-to-medium torque applications.
  • Steel: Steel jaw couplings offer high strength and durability, making them suitable for heavy-duty applications with high torque requirements.
  • Stainless Steel: Stainless steel jaw couplings are resistant to corrosion and are often used in applications where there is exposure to moisture, chemicals, or harsh environments.
  • Bronze: Bronze jaw couplings are known for their excellent wear resistance and low coefficient of friction, making them suitable for applications with high-speed and low lubrication.
  • Acetal: Acetal jaw couplings provide good chemical resistance and low moisture absorption, making them suitable for applications where chemical exposure is a concern.
  • Nylon: Nylon jaw couplings offer good strength, flexibility, and resistance to wear and chemicals, making them suitable for various industrial applications.

The choice of material depends on factors such as torque requirements, environmental conditions, operating speeds, and budget considerations. Engineers and designers select the appropriate material to ensure that the jaw coupling can perform optimally and withstand the demands of the application.

China Standard Powder Metallurgy Flexible Jaw Coupling Sintered Iron Jaw Coupling Hubs  China Standard Powder Metallurgy Flexible Jaw Coupling Sintered Iron Jaw Coupling Hubs
editor by CX 2024-04-12

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *